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Abstract Administration of CNTF durably reduces food intake
and body weight in obese humans and rodent models. However,
the involvement of endogenous CNTF in the central regulation
of energy homeostasis needs to be elucidated. Here, we demon-
strate that CNTF and its receptor are expressed in the arcuate
nucleus, a key hypothalamic region controlling food intake,
and that CNTF levels are inversely correlated to body weight
in rats fed a high-sucrose diet. Thus endogenous CNTF may
act, in some individuals, as a protective factor against weight
gain during hypercaloric diet and could account for individual
differences in the susceptibility to obesity.

© 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

The hypothalamic arcuate nucleus (ARC) integrates changes
in circulating levels of nutrients and hormones such as leptin
and insulin to respond to the energy body requirements [1].
The alteration of hypothalamic hormonal and/or nutrients
sensing contributes to the onset of obesity, which is usually
associated to hypothalamic leptin resistance [2-5].

Ciliary neurotrophic factor (CNTF) has been first demon-
strated to exert a trophic action on motor neurons of the cili-
ary ganglion [6]. This cytokine reduces food intake and body
weight by activating leptin-like intracellular pathways in the
ARC [7]. Interestingly, CNTF causes long-lasting weight loss
in most obese patients and animal models bypassing leptin
resistance [7-10]. Hence, CNTF has been considered as a
promising therapeutic tool for the treatment of obesity and
has prompted intense research aimed at identifying the cellular
and molecular mechanisms underlying its potent anorexigenic
properties. CNTF first binds to its specific receptor subunit
(CNTFRa), a membrane glycosyl-phosphatidyl-inositol
(GPI)-anchored. Binding of CNTF to CNTFRa induces het-
erodimerization of the f components of the receptor complex,
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leukaemia inhibitory factor receptor (LIFR) and gpl130
[11,12], leading to the activation of MAP kinase (MAPK)
and JAK-2/STAT-3 signaling pathways [13]. CNTF is also
able to regulate hypothalamic and muscle AMP kinase
(AMPK) [14,15].

The expression of CNTF and its receptor has been evidenced
in the rodent brain. Nevertheless, to date, no exhaustive inves-
tigation has regarded the expression of CNTF and its receptor
in the ARC. Besides, the role of CNTF as an endogenous mod-
ulator of energy homeostasis has not been yet determined. In-
deed, correlation studies between CNTF gene disruption and
body weight in mice or humans provided controversial data
[16-20]. However, compensatory pathways cannot be excluded
in such genetic approaches [21]. Thus, in this study, we have
reconsidered the hypothesis of a physiological role of CNTF
in the central control of energy homeostasis by using comple-
mentary morphological and biochemical approaches aimed at
identifying the cellular sources and targets of CNTF and
examining the impact of a high-sucrose or a high-fat diet on
CNTF level in the rat ARC.

2. Materials and methods

2.1. Animal experimental procedure

Adult (9 week-old) Wistar rats (males and females) were fed for 6
weeks with either a chow, a high-sucrose (HS) or a high-fat diet
adapted from previous studies [22]. Body weight was registered every
week and food intake monitored for the two last weeks before the
sacrifice. CNTF (0.3 mg/kg) or saline solution were injected (IP)
45 min before euthanasia. Recombinant CNTF, which crosses the
blood-brain barrier [23], was produced as previously described [24].
Experiments were performed according to European legal require-
ments (Decree 86/609/EEC).

2.2. Plasma parameters determination

Plasma glucose, cholesterol, insulin, leptin and triglycerides were
measured as previously described [25]. The homeostatic model assess-
ment (HOMA) for insulin resistance was calculated using the HOMA
version 2.2 calculator software (Diabetes Trials Unit, Oxford, UK).

2.3. CNTF in situ hybridization

A previously described CNTF oligonucleotide probe [26] (5" CCA
GAT AGA ACG GCT ACA GAG GTC CCG GCG GTG AAG
GGT CAG AGG 3') was labelled using terminal transferase and digo-
xygenin (DIG)-ddUTP according to the manufacturer’s recommenda-
tions (Roche Applied Science, Meylan, France). Free-floating sections
prepared from rat hypothalamus were incubated overnight at 42 °C
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Fig. 1. Detection of CNTF mRNA by in situ hybridization and CNTF protein by multiple fluorescent immunohistochemistry. CNTF mRNA is
present in rat ARC (A). CNTF-IF is found in astrocytes (arrows) where it overlaps with GFAP-IF (B-D) and in neurons (arrowhead) as shown on
NeuN immunolaballed sections (E-J). Overlapping of 3 0.4 um-thick focal planes. Scale bars = 20 pum for A-D; 10 um for E-G.

with labelled CNTF probe (0.2 nM). Following several washes as pre-
viously described [27], labelled cells were detected by a DIG-DNA
detection kit (Roche). Controls were assessed in the presence of the
sense probe.

2.4. Fluorescent immunohistochemistry

The immunohistochemical analyses were performed as previously
described with slight adaptations [28]. Hypothalamic sections
(50 um) were incubated with goat anti-CNTF (1:200, R&D Systems,
Minneapolis, MN, USA), goat anti-CNTFRa (1:50; Santa Cruz Bio-
technology, CA, USA) or rabbit anti-p42/44 MAPK (1:200; Cell Sig-
naling Technology, Beverly, MA, USA). The chosen antibodies
cross-react with the rat forms of CNTF and CNTFRa [29,30]. Multi-
ple stainings were performed using a combination of monoclonal
mouse anti-GFAP (Glial Fibrillary Acid Protein; 1:500; Sigma) or
anti-NeuN (Neuronal nuclei; 1:100; Chemicon, Temecula, CA, USA)
immunoglobulins. Primary antibodies were visualized with FluoP-
robes-488 (FP-488; Interchim, Montlugon, France) or cyanine-5
(CyS5; Jackson Immunoresearch Laboratories; Suffolk, UK) conju-
gated antibodies (1:400). Immunofluorescence (IF) was examined by
confocal microscopy (Zeiss LSM 510 system, Germany). Optical sec-
tions were taken through the Z axis at 0.4 pm intervals and averaged
three times. Quantification was performed with ImageJ 1.36 b software
(NIH, USA). Briefly, CNTF levels and GFAP coverage were assessed

by measuring the integrated fluorescence densities or the area fractions,
respectively, within the reproductive contours of a whole ARC and
after background subtraction.

2.5. Western blots

Whole hypothalamus samples were homogenized as previously de-
scribed [31]. Proteins (50 pg) were subjected to SDS/PAGE and Wes-
tern blot analysis using the anti-CNTF antibody. All Western blots
were normalized to B-tubulin (1:1000; Cell Signaling Technology). Blot
quantification was performed by using BiolD software (Vilbert Lour-
mat, Marne-la-Vallée, France).

2.6. Quantitative real-time PCR

A Fast SYBR Green Master mix (Applied Biosystems, Courtaboeuf,
France) was used to analyze CNTF mRNA expression level in the ARC.
The accumulation of PCR products was measured directly by monitor-
ing fluorescence intensity with a StepOne™ Real-Time PCR System (Ap-
plied Biosystems). Expression levels of mRNA were calculated after
normalization with the housekeeping gene B-actin. Nucleotide sequences
of the specific primers used were as follows: 5-GGACCTCTG
TAGCCGTTCTATCTG-3' (sense) and 5-GGTACACCATCCACT
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control

CNTFRa

Fig. 2. Multiple fluorescent immunohistochemistry. Co-detection of pMAPK and GFAP in saline (A-C) and CNTF-treated (D-F) rats. A single i.p.
injection of CNTF induces MAPK phosphorylation in GFAP-positive (arrow) and GFAP-negative (arrowhead) cells. Co-detection of CNTFRa and
NeuN (G-I). CNTFRo-IF is evidenced in the cytoplasm of a NeuN-positive cell. 0.4 pm-thick focal planes. Scale bars = 10 um for A-F; 15 pm for

G-1.

GAGTCAAGG-3’ (antisense) for CNTF; 5-CTATCGGCAAT
GAGCGGTTCC-3' (sense) and 5'-TGTGTTGGCATAGAGGTCTT-
TACG-3' (antisense) for B-actin.

2.7. Statistics

Data are represented as the mean percentage of control = S.E.M.
Unpaired Student’s ¢-test was carried out with Statview (SAS Institute,
NC, USA). The correlation coefficient was used to examine the rela-
tionship between hypothalamic CNTF levels and body weight in con-
trol, HS and HF fed animals. In all comparisons, results were
considered significant if P < 0.05.

3. Results

3.1. Identification of a local source of CNTF in the rat ARC
3.1.1. CNTF gene expression. Digoxygenin-labelled anti-
sense CNTF probes evidenced a perinuclear staining in some
ARC cells (Fig. 1A). No staining was observed with the sense
probe (not shown). Based upon double immunostaining exper-
iments combining anti-CNTF and anti-GFAP or anti-NeuN
antibodies, CNTF-IF appeared to emerge from approximately
90% of astrocytes (Fig. 1B-D) and 75% of neurons (Fig. 1E-J).

Table 1
Final body weights and physiological parameters measured in control, high-sucrose and high-fat diet fed animals.

C HS HF
Final body weight, g 265.28 +2.7 281.9 +4.3" 276.7+5.8
Energy intake, kcal/day 53.8+1.5 582+ O.g** 572+ lé**
Relative adipose tissue, % BW 32%0.2 45102 54£0.5
Relative liver weight, % BW 2.6 +0.06 2.53+0.05 2.52+0.06
Plasma
Glucose, g/l 1£0.02 1£0.03 1.09 £0.05
Triglycerides, g/l 0.71 £ 0.16 1.1 £0.25 0.97+0.23
Cholesterol, g/l 1£0.07 0.95+0.11 0.83£0.03
Insulin, ng/ml 0.74 £ 0.07 1.11£0.08" 1.47 £0.947
Leptin, ng/ml 1.73£0.15 3.03£0.19 3.53+044
HOMA index 0.79 £ 0.1 1.19+0.1 1.78 £ 0.2

if < 0.05 versus control.
M*P < 0.005 versus control.

P <0.001 versus control.
£P <0.05 versus HS.
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Fig. 3. Western blot analysis aimed at evaluating the impact of a high-sucrose (HS) or a high-fat (HF) diet on CNTF levels in the rat hypothalamus.
Compared to control and HF groups, the HS diet induces a significant 2-fold increase in the mean CNTF hypothalamic levels (AB) and a significant

6.4% increase in body weight (C). Unpaired Student’s ¢-test *P < 0.005.

It is to note that other hypothalamic nuclei, such as the para-
ventricular nucleus and the lateral hypothalamic area, ex-
pressed CNTF. However, the ARC exhibited the highest
amount of CNTF (not shown).

3.2. CNTF induces MAPK phosphorylation in the rat ARC
To identify the cellular types exhibiting functional CNTF
receptors in the rat ARC, the effect of CNTF on MAPK phos-
phorylation was examined. While pMAPK levels were low in
control animals (Fig. 2A), treated animals exhibited a dramatic
increase in MAPK phosphorylation both in astrocytes and
neurons, as revealed by detecting GFAP [Fig. 2D-F; arrow
pointing at an astrocyte (GFAP-positive cell); arrowhead
pointing at a neuron (GFAP-negative cell)]. The neuronal
expression of CNTFRa was corroborated since CNTFRo-IF
appeared in the shape of large puncta, presumably correspond-
ing to receptor clusters, in NeuN-positive cells (Fig. 2G-I).

3.3. Impact of a different hypercaloric diets on hypothalamic
CNTF level

To test the hypothesis of a relationship between the hypo-
thalamic expression of CNTF and the control of energy
homeostasis, two unbalanced diets were compared, high-su-
crose or high-fat, on CNTF levels in the hypothalamus and
the ARC. The endocrine and metabolic parameters are sum-
marized in Table 1. HS but not HF diet induced a significant
increase in body weight associated with increased energy in-
take. Both hypercaloric diets induced a significant increase in
relative subcutaneous adipose tissue, insulinemia, leptinemia
and HOMA index (Table 1). Plasma glucose, triglycerides

and cholesterol levels were not affected. The HS diet induced
a significant (2-fold) increase in CNTF hypothalamic levels
compared to control and HF groups (P < 0.005; Fig. 3A and
B). While no association was evidenced between CNTF hypo-
thalamic levels and body weight in control and HF animals
(r=0.2774 in control group; r=0.1732 in HF group;
P >0.1; Fig. 4A and C), a significant inverse correlation ap-
peared in HS animals (r = 0.8592; P < 0.001; Fig. 4B). Indeed,
in these conditions, animals with lower body weight exhibited
higher amounts of CNTF in the hypothalamus. This result was
corroborated in the ARC by evaluating both CNTF-mRNA
contents (0.99 in overweight-resistant versus 0.40 in the heavi-
est rats; QRT-PCR values normalized to B-actin-mRNA) and
CNTF-IF (Fig. 5A, D, G). It is noteworthy that this increase
in CNTF expression was specific to the ARC. In overweight-
resistant animals fed a HS diet, the mean CNTF-IF increase
in the ARC could reach +160% * 3 (P < 0.001; Fig. 5J) and
was associated to a significant decrease (—65% * 10;
P < 0.01) in the astrocytic coverage (Fig. 5B, E, H, K). Besides,
a positive correlation was found between body weight and
body weight gain in HS diet fed rats (r = 0.9801; P <0.001).

4. Discussion

Several studies attempted to correlate CNTF genotype and
body mass. Except in a report showing that the homozygous
null mutation of the CNTF gene is associated to increased
body mass in humans [19], no link was found between CNTF
gene disruption and body weight [16,20]. However, compensa-
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Fig. 4. CNTF hypothalamic levels determined by Western blot negatively correlates with body weight in HS diet fed (B) but neither in control (A)

nor in HF diet fed rats.

tory mechanisms cannot be excluded. Indeed the permanent
disruption of the orexigenic NPY gene does not affect body
weight or feeding behaviour [32,33] although ablation of
NPY-expressing neurons in adults causes rapid starvation [21].

To reconsider the possibility for CNTF to represent an
endogenous anorexigenic factor, we have developed an alter-
native strategy aimed at evaluating the impact of two unbal-
anced hypercaloric diets (high-sucrose or high-fat) on the
local production of CNTF in the rat ARC.

Here we first have demonstrated that neurons and astrocytes
express both CNTF and functional CNTFRa, as evidenced by
MAPK phosphorylation in response to exogenous CNTF.
Furthermore, the hypothalamic CNTF expression was in-
creased and inversely correlated with body weight in HS rats.
This suggests that endogenous CNTF could protect a fraction
of individuals against diet-induced weight gain and account, at
least partially, for the individual variations toward susceptibil-
ity to develop high-carbohydrate-induced obesity. In the light
of previous reports (i.e. [7,8]), we can assume that the curbing
effect of CNTF on weight gain could be linked to its anorexi-
genic properties. The anorexigenic action of CNTF can be
attributed to its expression not only in the ARC but also in
the paraventricular nucleus and the lateral hypothalamic area,
as observed in our laboratory. Nevertheless, the highest hypo-
thalamic amounts of CNTF were found in the ARC and the
increased expression of CNTF in obesity resistant rats was spe-
cific to the ARC, suggesting a crucial role of this nucleus in the
endogenous effect of CNTF on the regulation of energy
homeostasis.

Direct evidence for CNTF release has not been yet demon-
strated in vivo. Nevertheless, evidence was presented for re-
lease of CNTF from cultured astrocytes [34]. Besides, a
direct intracellular action may also constitute a plausible
mechanism of CNTF action, as demonstrated in vitro [35].
This possibility deserves further investigation.

Interestingly, the increase in CNTF levels observed in a
proportion of HS diet fed rats paralleled a retraction of
astrocytic processes. Astrocytes are known to play a piv-
otal role in the regulation of food intake by monitoring
circulating hormones/nutrients and communicating with
neurons [36-38]. Moreover, they modulate synaptic number
and activity in response to peripheral signals [39-42]. How-
ever, whether these modifications are beneficial or harmful
in situations of unbalanced energy status needs further
investigation. An intrinsic inhibition of CNTF on glial cov-
erage is unlikely because previous studies have demon-
strated that CNTF does not reduce but instead stimulate
GFAP production and astrocytic network extent in the
brain [43,44].

It is noteworthy that HS and HF diets similarly affect insu-
lin, leptin and glucose circulating levels but only HS modifies
CNTF expression and astrocytic coverage in the ARC. This
clearly indicates that diet composition plays a key role in neu-
ronal organisation of hypothalamic nuclei and may account
for the individual variations of predisposition to develop obes-
ity.

In conclusion, our data show that CNTF may be considered
as an endogenous modulator of energy homeostasis in the
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Fig. 5. Co-detection of CNTF and GFAP by immunofluorescence reveals that CNTF level increases while GFAP coverage decreases in a fraction of
HS diet fed rats compared to control and HF groups (A-I). These alterations are estimated at +160% for CNTF (J) and —65% for GFAP (K). Scale

bar = 10 pm.

ARC that possibly protects some individuals against the onset
of diet-induced obesity.
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